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An overhead crane, modelled as a point mass carriage traversing a simply supported
Euler}Bernoulli beam that is allowed to travel in a direction perpendicular to its span,
is considered. The point mass payload is attached to the carriage via a massless beam
and is allowed both in-plane and out-of-plane motion. The Rayleigh}Ritz solution
technique is used to obtain the equations of motion of the system. The in#uence of traverse
and travel motions, pendulum length and payload mass on the pendulum motion are
investigated.
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1. INTRODUCTION

Overhead cranes are used in industry primarily for moving heavy payloads. The desire to
move the payload in the shortest possible time is counterbalanced by the tendency of the
payload swing to increase with increasing carriage acceleration. This behavior can be
ameliorated with an automatic controller but to do so requires an accurate characterization
of the system dynamics [1, 2]. The dynamics of elastic continua with moving loads has been
covered by Fryba [3] and more recent work presents the approximate analytical solutions
[4}7] and "nite element solutions [8, 9] to similar problems. The interested reader can
consult these and the references therein.

The assumptions made in reference [10], where the payload motion is limited to the
vertical plane containing the beam, led to a system of equations where the beam
dynamics were independent of the payload dynamics but not conversely. The present study
extends that investigation to include in-plane and out-of-plane motion. Lee [11]
implements a similar extension but ignores the beam dynamics. Here the #exibility of the
beam in both directions is accounted for and the carriage can accelerate along the length
of the beam (referred to as traversal) and the beam can accelerate in a direction
perpendicular to its axis (referred to as travel). The beam is modelled as an Euler}Bernoulli
beam, the carriage is modelled as a point mass that can traverse the beam from one end
to the other, and the payload is assumed to be a point mass attached to the carriage via
a massless beam (referred to together as the pendulum). The Rayleigh}Ritz solution
technique is used to obtain the equations of motion of the system which are solved
022-460X/01/180411#16 $35.00/0 ( 2001 Academic Press
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with a modi"ed Newmark method [8]. In the sequel, the e!ects of the beam travel and
carriage traverse pro"les, the length of the pendulum, and the payload mass on the swing of
the pendulum are investigated.

2. DESCRIPTION OF THE SYSTEM

The system is depicted in Figure 1 where the payload of mass m
p

is attached to the
carriage via a massless beam of length¸

p
, the carriage has mass m

c
, and the beam has length

¸
b
. The carriage is prescribed to traverse the beam from the left-hand end to the right-hand

end through a distance x
c
and the beam may also have a prescribed travel in the>-direction

of y
b
. An inertial frame X>Z is attached at the point O with the unit vectors [a(

1
, a(

2
, a(

3
]

de"ned along the X-, >- and Z-axis respectively. The pendulum angles of swing are
assumed to be small and is represented by the angles h

x
(measured from the >Z-plane) and

h
y
(measured from the XZ-plane).

3. EQUATIONS OF MOTION

The position vector of an elemental mass of the beam, r6
b
, is given as
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The position vector of the carriage mass, r6
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, may be expressed as
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Figure 1. Schematic of the system.
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and the position vector of the payload r6
p

can be written as
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where w(x, t) and v(x, t) are the in-plane (Z-direction) and the out-of-plane (>-direction)
elastic deformations of the beam.

The kinetic energy of the system T is composed of contributions from the beam T
b
, the

carriage T
c
, and the payload T

p
. These may be expressed as
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The system total potential energy U is
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The "rst two terms are the beam strain energy and the last two are the gravitational
potential energy (g is the acceleration due to gravity) of the carriage and payload. It is
expedient to introduce the following non-dimensional parameters:
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and the dimensional ratio X2Og/L
b
.

As per the Rayleigh}Ritz solution technique and using the non-dimensional co-ordinate
m, the elastic displacements are assumed such that

v(x, t)"¸
b
VT (m)p(t) and w (x, t)"¸

b
WT(m)q (t), (9)
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where c
i
and j

i
are the non-dimensional circular eigenfrequencies of the the ith out-of-plane

and in-plane modes respectively. Upon using the equations (8) and (9) as well as expressions
(4)}(7) the Rayleigh}Ritz method yields the following equations of motion:
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where I is an identity matrix.
Equations (10)}(13) call for a few remarks. First, the in-plane beam motion w uncouples

from the other motions (i.e., the out-of-plane motion v, and the payload motions h
x
and h

y
)

but not conversely. Second, the in-plane motion w behaves as a sti!ness modulator in the
payload motions h

x
and h

y
(see equations (12) and (13)) and has the potential to make the

motion unstable because equation (12) has the Hill}Mathieu form. Third, with reference to
equations (10) and (13), the out-of-plane motion v does not uncouple from the payload
out-of-plane motion h

y
; they act as forcing terms on each other. Fourth, the travel of the

beam g
b
is only manifest as a forcing term in the out-of-plane motions (equations (10) and

(13)) where it appears as an acceleration. Fifth, while the in-plane motion (11) is invariant to
the individual carriage and payload masses for a given constant sum of carriage mass and
payload mass m

cp
, the out-of-plane de#ection (10) is explicitly dependent on the payload

mass through the coupling with the out-of-plane payload motion. Finally, the equations are
non-linear in the carriage speed m0

c
.

It is important to include the non-linear contribution of the traverse speed since, in the
engineering design sense, the linear analysis is non-conservative when the carriage speed is
su$ciently large, i.e., the linear analysis yields beam de#ections that are smaller than those
obtained with the non-linear analysis. Thus, the non-linearity is retained in the numerical
simulations presented in the next section of the paper.

For beam travel alone (i.e., m
c
"constant), equations (10)}(13) become
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It is worth noting that if the beam were rigid then the angle of the pendulum (h) in the
direction transverse to the pivot motion would be given by the solution of

l
p
hG#X2h"0 (18)

and the angle in the direction of the pivot motion (f (t)) would be governed by

l
p
hG#X2h#fG"0. (19)

4. NUMERICAL EXAMPLES AND COMMENTS

The beam used in the following numerical examples has the properties given in Table 1.
This choice of parameters has been selected, in the "rst instance, to facilitate a comparison
between the present results and those obtained by Pesterev and Bergman [6, 7]. The time
required for both carriage traverse and beam travel has been "xed at 60 s in agreement with
the examples used by Pesterev and Bergman [6, 7]. It is apparent from the equations
derived above that the acceleration and deceleration phases are the most signi"cant and
changing the time duration of the simulation, keeping all other parameters constant, would
either diminish the period of constant velocity or extend it. Keeping the constant velocity
duration unchanged would require larger accelerations (shorter overall times) or smaller
accelerations (longer overall times). The issue of motion trajectory is more suitably dealt
with as a control problem and it has not been treated as a parameter that will be varied in
the following examples.

Pesterev and Bergman [6, 7] considered three cases, each distinguished by a di!erent
carriage traversal motion but with no beam travel. In the "rst case, the carriage traversed
the beam with a constant speed, in the second case, the carriage decelerated uniformly from
an initial speed of 12 to 0 m/s and in the third case, the carriage accelerated uniformly from
an initial speed of 0 m/s. Excellent agreement was found between the example results
reported in references [6, 7] and the results found by repeating those examples with the
model developed above.

The payload swing is a!ected by the carriage traverse and beam travel accelerations, xK
c

and yK
b

respectively. In practice, the carriage (or beam) starts with a zero initial velocity,
accelerates to a particular speed which could be held constant for some time before
decelerating to rest. All the following cases are based on traversal or travel pro"les
TABLE 1

Beam property values

E 2)11]1011 Nm2 l 0)33
¸
b

6 m A 20)396]10~3 m2
I
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0 M
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u
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0)724 Hz u
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0)6609 Hz
u
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2)897 Hz u
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represented by a quintic polynomial which allows for a smooth transition between the
di!erent motions. The overall motion is divided into three time intervals, [0, t

1
], [t

1
, t

2
],

and [t
2
, t

f
]. The duration of the simulation is t

f
, t

1
denotes the end of the acceleration

interval, the interval [t
1
, t

2
] is the period of constant speed and the "nal interval is

deceleration. In all cases, the terminal times of the intervals are t
1
"15 s, t

2
"45 s and

t
f
"60 s and the displacement at the end of the "rst interval is 1 m, the speed during the

constant speed phase is 0)133 m s~1 and the deceleration phase occurs over the last meter of
the motion. The initial displacements for each swing angle are h

x
(0)"!0)01 and

h
y
(0)"!0)01. Although the governing equations of motion are non-linear and an FFT

analysis of the signals is not strictly appropriate it has been used in each of the following
cases to obtain an estimate of the frequency content of each simulation to allow
comparison.

4.1. CASE 1: EFFECT OF PENDULUM LENGTH

In the following simulations the pendulum length is varied while keeping the travel and
traverse pro"les as described above.

4.1.1. Beam travel

For beam travel alone (i.e., no traverse motion and with m
c
"0)5) the governing equations

are equations (14)}(17). The non-dimensional masses and lengths of the beam}
carriage}payload system are given in Table 2. The swing angles h

x
and h

y
, as obtained by

numerically solving equations (14)}(17), are depicted in Figures 2 and 3 respectively. If the
beam were rigid, h

x
would be expected to behave as a simple harmonic oscillator as

predicted by equation (18) and h
y

would be consistent with equation (19). The di!erence
between the closed-form results obtained from equations (18) and (19), and those obtained
from the numerical solution of equations (14)}(17) are shown in Figures 4 and 5 where
Dh"h

&-%9*"-%
!h

3*'*$
. It may be observed, by comparing Figures 2 and 4 that for l

p
"1

3
,

Dh
x
'h

x
; a result which at "rst glance seems counter-intuitive. It may be understood by

considering Figure 6 where it may be observed that the h
x

trajectories have di!erent
frequencies; an FFT analysis of the data in this "gure shows that the dominant frequency in
the rigid beam case is 0)358 Hz and in the #exible beam case is 0)342 Hz. Signals with these
frequencies will be out of phase at approximately t"51)3 s, which is what may be observed
in the "gure. The acceleration and deceleration phases are not as apparent in Figure 3 as
they are in Figure 7 because in the former case, the forcing term is no longer solely
dependent on the travel acceleration.

Recall that Figures 2 and 4 are for a motion that is transverse to the travel of the beam
and it could be reasonably expected that the di!erence between the results for the rigid- and
the #exible-beam assumption would be negligible. It is found that the di!erence is actually
relatively large, on the same order of magnitude as the initial angular displacement for h

x
.

This behaviour is entirely due to the #exibility of the beam as shown in equation (16) where
it may be seen that h

x
couples to wK which in turn is governed by the uncoupled linear

ordinary di!erential equation (15) (m0
c
"0 and mG

c
"0) that predicts a periodic behaviour of

w(x, t). The frequencies present in w(x, t) are given by the eigenvalues of the simpli"ed form
of equation (15) and are approximations to the natural frequencies of the beam/
carriage/payload system. The "rst two natural frequencies, as determined by the analytical
frequency equation [10], are given in Table 2. These values are identical to the eigenvalues.
The periodicity of w (x, t) manifests itself in equations (16) by contributing a time-varying



TABLE 2

Parameter and result values for the pendulum length ewect examples

M
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Beam travel motion
h
x

h
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h
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h
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h
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h
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h
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h
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h
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h
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1
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Figure 2. E!ect of pendulum length on in-plane swing, beam travel motion: (**) l
p
"1

3
; (***) l

p
"2

3
;

( ' ' ' ' ' ' ) l
p
"1.
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component to the frequency coe$cient of h
x
. This explains why, in Figure 4, the di!erence

increases with time with the rate of increase being such that the peak amplitude of Dh
x

increases faster for l
p
"1

3
than for l

p
"2

3
which increases faster than for l

p
"1. For the short

pendulum (l
p
"1

3
) the amplitude of h

x
is always less than its initial magnitude (see Figure 2).

When l
p
"2

3
the amplitude of h

x
regularly exceeds the initial magnitude but the l

p
"1

pendulum exhibits oscillations that are greater than those for l
p
"1

3
but less than those for

l
p
"2

3
.

With reference to the responses shown in Figures 2 and 3 the "rst of the two most
dominant frequencies u(

1
and u(

2
, as determined from an FFT analysis, decreases with

increasing length of pendulum while the second dominant frequency increases (see Table 2).



Figure 3. E!ect of pendulum length on out-of-plane swing, beam travel motion: (**) l
p
"1

3
; (***) l

p
"2

3
;

('' ''' ') l
p
"1.

Figure 4. Rigid/#exible di!erence of in-plane swing, beam travel motion: (**) l
p
"1

3
; (***) l

p
"2

3
; ('' '' '')

l
p
"1.
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Further, with reference to Table 2, both the in-plane and out-of-plane swing results show
that for all but the l

p
"1, h

x
case the dominant frequency is lower than the pendulum's

natural frequency. The frequency step size (0)016 Hz) used in the FFT analysis is responsible
for the apparent discrepancy in the l

p
"1 case.



Figure 5. Rigid and #exible beam in-plane swing responses, beam travel motion: (**) #exible beam; (***)
rigid beam; l

p
"1/3.

Figure 6. Rigid/#exible di!erence of out-of-plane swing, beam travel motion: (**) l
p
"1

3
; (***) l

p
"2

3
;

('' ''' ') l
p
"1.
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The amplitude of h
y

(Figure 3) exceeds the initial amplitude for all pendulum lengths
investigated and has a positive mean value due the energy added to the pendulum during
the acceleration phase of the motion. Additionally, the forcing term is no longer solely
dependent on the travel acceleration. Given the positive deviations, one can conclude that
the contribution due to elasticity< (m

c
)TpK is dominating the acceleration contribution. In the



Figure 7. E!ect of pendulum length on in-plane swing, carriage traverse motion: (**) l
p
"1

3
; (***) l

p
"2

3
;

('' ''' ') l
p
"1.
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l
p
"1

3
case there is clear evidence of higher order frequency components in the response. The

di!erence between the response of h
y
for the rigid- and #exible-beam models is illustrated in

Figure 6 were it may be observed that the largest di!erence corresponds to the pendulum of
shortest length and that for that pendulum there is a distinctive beat-like behavior.

4.1.2. Carriage traversal

The results for h
x
and h

y
for the case of the carriage traversal (no beam travel, gK

b
"0) are

illustrated in Figures 7 and 8 respectively. As in the beam travel case discussed previously, if
the beam were rigid h

y
would be expected to behave as a simple harmonic oscillator as

predicted by equation (18) and h
x

would be consistent with equation (19). The di!erence
between the results obtained from equations (18) and (19) and those obtained from the
numerical solution of equations (14)}(17) are shown in Figures 9 and 10.

In Figure 7, it is easy to identify the end of the acceleration phase (t"15 s) and the
beginning of the deceleration phase (t"45 s) in the response of h

x
. During those portions of

the carriage motion, h
x

exhibits small excursions beyond its initial value and during the
constant speed phase of the motion, h

x
behaves in a stable periodic fashion that contrasts

quite strongly with the motion described by h
y
in the beam travel case (Figure 3) discussed

above. The acceleration and deceleration phases are more apparent in Figure 7 than they
are in Figure 3 because in the latter case, the forcing term is not solely dependent on the
travel acceleration, as it is here. This di!erence must be due to the non-linear contributions
from m0

c
and mG

c
in the governing equations (10)}(13); non-linearities that are not present in

equations (14)}(17).
A further di!erence between the beam travel and the carriage traverse cases can be

appreciated by observing in Figure 9 that the di!erence between the rigid-beam assumption
and the #exible-beam model results is, in the carriage traverse case, negligible. The clear
beating behaviour illustrated in Figure 9 is of interest.



Figure 8. Rigid/#exible di!erence of in-plane swing, carriage traverse motion: (**) l
p
"1

3
; (***) l

p
"2

3
;

('' ''' ') l
p
"1.

Figure 9. E!ect of pendulum length on out-of-plane swing, carriage traverse motion: (**) l
p
"1

3
; (***)

l
p
"2

3
; (' '' ''') l

p
"1.
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Unlike h
x
, h

y
uniformly exceeds its initial amplitude but only in the positive direction and

quite uniformly by a factor of close to three. This accounts for the large Dh
y

values in
Figure 10. The growth in Dh

y
for the l

p
"1

3
case during approximately the last 2/3rds of the

time history is unexplained except to observe that the same behavior, but to a far lesser
degree, occurs for the other two cases as well.



Figure 10. Rigid/#exible di!erence of out-of-plane swing, carriage traverse motion: (**) l
p
"1

3
; (***)

l
p
"2

3
; (' '' ''') l

p
"1.
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4.2. CASE 2: EFFECT OF PAYLOAD MASS

For a simple pendulum, with or without a moving pivot, the mass of the pendulum does
not contribute to the dynamics of the system. The addition of the #exible beam changes
that. Equation (10) depends on the combined carriage/payload mass M

cp
and the payload

mass M
p

but equation (11) directly depends only on the sum M
cp

. Neither h
x

nor h
y
,

equations (12), (13), explicitly depend on either M
p

or M
cp

. The e!ect of payload mass is
examined by "xing the non-dimensional pendulum length at l

p
"2

3
, the non-dimensional

carriage mass at M
c
"0)1, and the non-dimensional payload mass M

p
3M0)05, 0)15, 0)25N.

4.2.1. Beam travel

The angles h
x

and h
y
, for each value of M

p
and with the beam in travel motion

(m
c
"constant"0)5), are plotted in Figures 11 and 12 respectively. The role that the

payload mass plays in the swing response is very evident in these two "gures where it may
be seen that the peak amplitudes increase with increasing mass and are much greater than
the amplitude increases due to increasing pendulum length. Additionally, just as in
Figure 3, the forcing term is no longer solely dependent on the travel acceleration. The
positive deviations are due to the elasticity contribution <(m

c
)TpK which is dominating the

acceleration contribution. The acceleration and deceleration phases are not as apparent in
Figure 12 as they are in Figure 13 because in the former case, the forcing term is no longer
solely dependent on the travel acceleration.

In the l
p
"1

3
case there is clear evidence of higher order frequency components in the

response. The di!erence between the response of h
y
for the rigid- and #exible-beam models

is illustrated in Figure 6 were it may be observed that the greatest di!erence corresponds to
the pendulum of shortest length and that for that pendulum there is a distinctive beat-like
behavior.

The frequency content of these results, as obtained from an FFT analysis, are reported in
Table 2. The frequencies associated with the larger masses are higher than the pendulum



Figure 11. E!ect of payload mass on in-plane swing, beam travel motion: (**) M
p
"0)05; ; (***)

M
p
"0)10; (' ''' '') M

p
"0)15.

Figure 12. E!ect of payload mass on out-of-plane swing, beam travel motion: (**) M
p
"0)05; (***)

M
p
"0)10; (' ''' '') M

p
"0)15.
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natural frequency of 0)249 Hz. As in the pendulum length examples the di!erences between
the results, assuming a rigid and a #exible beam, are large.

4.2.2. Carriage traverse

The corresponding results for the carriage traverse motion (no travel, g"0) are depicted
in Figures 13}15. The results for h

x
and h

y
during the carriage traverse motion show that h

x



Figure 13. E!ect of payload mass on in-plane swing, carriage traverse motion: (**) M
p
"0)05; (***)

M
p
"0)10; (' ''' '') M

p
"0)15.

Figure 14. E!ect of payload mass on out-of-plane swing, carriage traverse motion: (**) M
p
"0)05; (***)

M
p
"0)10; (' ''' '') M

p
"0)15.
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(Figure 13) has a single frequency component at u(
1
"0)244 Hz. Figure 13 also shows that

the payload mass has no e!ect on the h
x
response in this case. The e!ect of the acceleration

and deceleration phases can be clearly seen in this "gure. An examination of the di!erence
between the rigid- and #exible-beam results shows that the in-plane swing h

x
deviates only

minutely between the two cases; h
x
behaves very much as if the beam were rigid for carriage



Figure 15. Rigid/#exible di!erence of out-of-plane swing, carriage traverse motion: (**) M
p
"0)05; (***)

M
p
"0)10; (' ''' '') M

p
"0)15.
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traverse motion. The plotted result appears very much as the results which appear in
Figure 9.

Both the h
x

and h
y

signals (Figures 14 and 15) have a single dominant frequency of
u(

1
"0)244 Hz except in the case of h

y
when M

p
"0)25. Figure 15 shows that h

y
does not

behave in a manner which is close to the calculated rigid-beam response. There is an
interesting similarity between Figures 10 and 15; both show instances where there is
a signi"cant divergence from the rigid-beam behavior. In Figure 10, this occurs for the
shortest pendulum and in Figure 15 it occurs for the heaviest pendulum. The acceleration
and deceleration phases are more apparent in Figure 13 than they are in 12 because in the
latter case, the forcing term is not solely dependent on the travel acceleration, as it is here.

5. SUMMARY

The system assumptions yield equations of motion where the vertical vibration of the
beam couples with the other motions, but not conversely. The in-plane beam deformation
appears as a sti!ness modulator in the equations for the h

x
and h

y
motions. The h

y
motion

and beam displacement v (x, t) couple with each other as forcing terms. Hence, the vertical
beam motion implicitly couples with the horizontal beam motion. Further, it is observed
that the traverse and travel accelerations act as forcing terms in the h

x
and h

y
swing motions

respectively. The e!ect of the beam travel motion is neither manifested in the h
x

motion as
a velocity term nor as an acceleration term. This, however, cannot be said for the e!ect of
carriage motion over a "xed beam on the h

y
motions. The examples indicate that the swing

angles and frequencies are dependent on the length of the pendulum and the payload mass
or the combined payload and carriage mass. The pendulum length results show that the
dominant frequencies in the swing responses decreased with increasing pendulum length.
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The amplitude of swing angle increased with increasing payload mass, because of the
increasing contributions of the forcing terms. Minimal changes were observed in the swing
angle frequencies for corresponding changes in payload mass. This analysis reveals the
complexity of the three-dimensional overhead crane dynamics. Further assumptions or
approximations may be necessary to have a simpler, yet valid, model that will e!ectively
represent the system dynamics. Presently, it may be worthwhile to adopt a problem speci"c
approach to the design and control issues.
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